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Abstract: SCF-LCAO-MO computations are presented for the four bases of DNA interacting with one molecule of water lo­
cated at different positions and orientations around each base. The 368 computed total energies, E, for the water-base complex 

-A. ab '/n/ + 5,/* W + C,j°l>/rtj) + £(base) + have been fitted with an analytical potential of the form E = Y, Y, (" 
• j*i 

£Xwater), where / and j designate two atoms, one on the base and the other one in the water molecule, a is an index that distin­
guishes the electronic environment of an atom in the base, b is an index that distinguishes between either a hydrogen or an oxy­
gen atom in the water molecule, A, B, and C are fitting constants, £(base) and £(water) are the total energies of the base and 
of the water molecule, respectively, at infinite separation from one another. The overall standard deviation of the fit (compar­
ing the SCF-LCAO-MO energies with those obtained by the above analytical potential) is 0.68 kcal/mol. In this work we 
have made use of recently reported potentials describing the interaction of water with 21 amino acids. 

In the previous paper2 of this series we have reported pair 
potentials representing the interaction energy of a water 
molecule with 21 naturally occurring amino acids. In this paper 
we extend our work by reporting the pair potentials for the 
interaction of water with the four bases of DNA. In a following 
paper,3 we shall examine the overall quality of these potentials, 
taking the phenylalanine (the last one of the series of naturally 
occurring amino acids) as an example. 

The potentials are obtained by fitting the computed inter­

action energies (in the SCF-LCAO-MO approximation) 
between a molecule M (amino acid or bases of DNA) and a 
molecule of water, placed at a large number of positions and 
orientations around M (a total of over 2000 positions and 
orientations have been computed in the SCF-LCAO-MO 
approximation to ensure we have a sufficient sample of the 
potential energy surfaces representing the interaction of the 
molecules M with water). 

We have concentrated our effort on a few building blocks 
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Table I. Geometry," Charges, and Molecular Orbital Valency States for Adenine* 

Atom 

N(I) 
N(2) 
N(3) 
N(4) 
N(5) 
C(I) 
C(2) 
C(3) 
C(4) 
C(5) 
H(I) 
H(2) 
H(3) 
H(4) 
H(5) 

Class 

12 
12 
12 
15 
11 
24 
19 
20 
25 
25 
16 
16 
16 
1 
1 

X 

4.457 
2.176 

-2.416 
-2.457 

2.280 
2.280 
0.000 
0.000 
4.301 

-3.798 
6.091 

-3.119 
-5.876 

0.696 
3.865 

y 

2.596 
-1.256 

3.516 
-0.751 

6.384 
3.852 
2.588 
0.000 
0.086 
1.373 

-0.968 
-2.521 

1.373 
7.413 
7.413 

Z 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

Charge 

-0.33 
-0.32 
-0.29 
-0.47 
-0.60 

0.25 
-0.01 

0.21 
0.05 
0.05 
0.20 
0.38 
0.21 
0.33 
0.32 

MOVS 

0.90 
0.94 
0.89 
1.33 
1.28 
1.52 
1.14 
1.30 
1.41 
1.22 
0.28 
0.33 
0.30 
0.30 
0.30 

" The geometry has been taken from M. Spencer, Acta Crystallogr., 12, 59 (1959). *Total energy -462.841 au. 

Table II. Geometry,0 Charges, and Molecular Orbital Valency States for Guanine* 

Atom 

O 
N(I) 
N(2) 
N(3) 
N(4) 
N(5) 
C(I) 
C(2) 
C(3) 
C(4) 
C(5) 
H(I) 
H(2) 
H(3) 
H(4) 
H(5) 

Class 

27 
15 
12 
12 
15 
11 
24 
20 
19 
26 
25 
16 
16 

1 
1 

16 

X 

8.535 
9.288 
5.899 
3.158 
1.748 
9.997 
8.353 
4.334 
5.156 
7.747 
1.161 

-0.804 
0.559 
9.461 

11.871 
11.161 

"The geometry has been taken from M. Spencer, Acta 

Table III. Geometry; 

Atom 

O 
N(I) 
N(2) 
N(3) 
C(I) 
C(2) 
C(3) 
C(4) 
H(I) 
H(2) 
H(3) 
H(4) 
H(5) 

a Charges, 

Class 

27 
15 
12 
11 
26 
24 
25 
25 

1 
1 

16 
16 
16 

y 

7.333 
3.040 
0.122 
6.191 
2.159 

-1.260 
0.666 
2.089 
4.544 
5.166 
4.603 
5.280 
0.690 

-3.072 
-1.013 

3.286 

Z 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

Crystallogr., 12, 59 (1959). * Total energy 

and Molecular Orbital Valency States for Cytosine* 

X 

15.682 
19.039 
14.826 
14.140 
16.471 
15.768 
18.318 
19.995 
12.264 
14.692 
18.995 
22.048 
20.228 

y 

-0.460 
2.159 
3.649 
7.920 
1.706 
5.980 
6.522 
4.524 
7.689 
9.727 
8.487 
4.849 
0.690 

Z 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

Charge 

-0.36 
-0.49 
-0.38 
-0.25 
-0.46 
-0.62 

0.42 
0.21 

-0.05 
0.37 
0.02 
0.20 
0.38 
0.35 
0.31 
0.35 

-537.459 au. 

Charge 

-0.40 
-0.48 
-0.36 
-0.60 

0.46 
0.26 

-0.31 
-0.01 

0.33 
0.31 
0.19 
0.23 
0.37 

MOVS 

0.35 
1.22 
0.92 
0.91 
1.34 
1.28 
1.58 
1.30 
1.09 
1.67 
1.20 
0.30 
0.33 
0.31 
0.30 
0.31 

MOVS 

0.33 
1.24 
0.83 
1.28 
1.66 
1.50 
1.26 
1.43 
0.30 
0.29 
0.28 
0.30 
0.31 

"The geometry has been taken from M. Spencer, Acta Crystallogr., 12, 59 (1959). *Total energy -391.161 au. 

of biochemical interest, namely amino acids and DNA bases; 
as known, the amino acids are components of proteins; the four 
bases, presented here, are components of DNA. 

In the first paper of this series,2 we have provided a rather 
extended set of references4 where the method here used to 
study the solvation of water with biomolecules has been suc­
cessfully tested. In our approach we have kept in mind the 
following constraints: (a) the practical impossibility to carry 
out an investigation of many molecules of water around a 

biomolecule, if one selects to use ab initio quantum-mechanical 
computation; (b) the need to include temperature effects in any 
realistic study of solutions; and (c) the need to consider the 
water-water interactions in addition to the consideration of 
the interaction of a single molecule of water with a biomolec­
ule. 

With this in mind we have: (a) computed the water-water 
interaction to rather high accuracy; (b) computed the water-
biomolecule interactions in the SCF-LCAO-MO approxi-
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Table IV. Geometry," Charges, and Molecular Orbital Valency States for Thymine* 

Atom 

0(1) 
0(2) 
N(I) 
N(2) 
C(I) 
C(2) 
C(3) 
C(4) 
C(5) 
H(I) 
H(2) 
H(3) 
H(4) 
H(5) 
H(6) 

Class 

27 
27 
15 
15 
26 
25 
28 
26 
6 

16 
16 
16 
3 
3 
3 

X 

0.000 
4.188 

-2.258 
2.305 
0.000 

-2.258 
0.000 
2.307 
0.000 
3.903 

-3.792 
-3.930 
-1.672 

0.000 
1.672 

y 

7.463 
0.000 
3.854 
3.939 
5.158 
1.304 
0.000 
1.332 

-2.910 
5.082 
5.082 
0.134 

-3.627 
-3.627 
-3.627 

Z 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

-0.965 
1.930 

-0.965 

Charge 

-0.40 
-0.36 
-0.47 
-0.49 

0.51 
-0.05 
-0.09 

0.35 
-0.58 

0.36 
0.37 
0.23 
0.19 
0.20 
0.22 

MOVS 

0.33 
0.33 
1.28 
1.21 
1.66 
1.39 
1.22 
1.60 
1.46 
0.32 
0.31 
0.29 
0.26 
0.26 
0.28 

' The geometry has been taken from M. Spencer, Acta Crystallogr., 12, 59 (1959). *Total energy -449.833 au. 

mation with a basis set sufficiently large as not to give gross 
errors;2 (c) obtained a set of pair potentials that when used in 
conjunction with the water-water potential allows a rather 
accurate description of the interactions of many molecules of 
water with a biomolecule; and (d) devised a rather flexible form 
of the pair potential (for the molecule M and water) such that 
several aspects of this work performed on a few specific mol­
ecules might be easily transferred to the study of the interaction 
between similar molecules. 

A number of different approaches have been presented in 
literature, and we refer to a recent review paper on the subject,5 

and to the references given in the first paper of this series.2 We 
think that some of the other methods5 adopted today to study 
the water solvation in biomolecules possibly present the limi­
tation of not being adapted to statistical mechanical extensions 
(it is known that the internal energy alone is a parameter totally 
insufficient to describe the thermodynamics of solution), nor 
to be constructed in such a way as to allow easy transferability.4 

In the review paper by Pullman and Pullman5 one can find a 
rather detailed description of one water molecule at a few po­
sitions and orientations around adenine, one of the four bases 
studied in this work; a detailed comparison with this work is 
not feasible, however, since the input geometries are not 
available for the computation published by the Pullmans. 

Results and Discussion 
Computation of the Interaction Energy. As stated above the 

interactions of the four bases of DNA and one molecule of 
water are computed in the SCF-LCAO-MO approximation. 
The molecular orbitals are expanded in a linear combination 
of contracted Gaussian functions, each one centered at a nu­
cleus of the system.6 The basis set used here is given elsewhere;2 

we note that this basis set is very similar to the one we selected 
some time ago to describe the electronic structure of the four 
bases.7 

For the four molecules, adenine, cytosine, guanine, and 
thymine, we have selected the geometry given in ref 8. In Ta­
bles I-IV the geometry is reported by presenting the x, y, and 
z coordinates of the atoms (in atomic units). In addition, in 
these tables we report a code name for each atom (and other 
quantities explained later). 

Each base, M, is considered fixed in space and the water 
molecule, W, is placed at different positions and orientations 
around M. For each position and orientation of the water 
molecule we have computed the total energy of the system M 
+ W, designated as £(M,W); by subtracting from £(M,W) 
the energy of the water molecule, E( W), at infinite distance 

from M, and the energy of the molecule M, E(M), at finite 
distance from the water molecule, we obtain the interaction 
energy, /(M,W), between M and water, namely /(M,W) = 
£(M,W) - E(M) - E(W). The value of E(M) for the four 
bases considered here is given at the bottom of Tables I-IV (in 
atomic units). 

In Tables I-IV, the last two columns report the computed 
net charges, NCH, following the formalism proposed by 
Mulliken,9 and the molecular orbital valency state energy 
(MOVS), following the formalism proposed by Clementi.10 

Such quantities represent the gain (or the loss) in the electronic 
population of an atom (NCH) and the energy variation for the 
same atom (MOVS) characterizing the electronic rear­
rangement in the formation of a molecule when one starts from 
its component atoms (considered in the ground state atomic 
configuration). Therefore the quantity NCH and MOVS can 
be used as quantum mechanical indices, that in a simple way 
partly described the electronic environment of an atom when 
in a molecule. 

We have considered 368 positions or orientations of the 
water molecule with the four bases, more specifically 82, 73, 
88, and 125 for adenine, guanine, cytosine, and thyamine, re­
spectively.11 In such computations we have included cases 
yielding strongly repulsive interactions as well as strong and 
moderate attractions. The distances from one atom of water 
to one atom in the base varies from a minimum of about 3.5 
au to a maximum of about 20 au.'' 

Analytical Expression of the Interaction Energy. As done 
in the previous paper,2 we express the interaction energy 
/(M, W) as the sum of pair potentials between all possible pairs 
of atoms, one on M (designated by the index "r") and the 
second on water (designated by the index " / ' ) . In addition we 
select another set of indices "a" and "b" to further characterize 
the pair of atoms on the two interacting molecules. Such ad­
ditional characterizations differentiate for a given atom, within 
a group of atoms of equal atomic number Z, the specific 
electronic environment of that atom in a molecule. 

For the interaction energy we write: 

/(M,W) = E L V*(M,W) 
' J 

where the pair potential is expressed as 

Aifb = -Ai/Hnj)-6 + B,j'b{rtj)-^ + C,/*9,9y(ry)-' 

and where the A, B, and C quantities are fitting constants; the 
quantities qt and qj are the net charges, NCH, for the atom 
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Table V. Pairwise Interaction Constants for Molecule-Water Complexes: Interaction with Oxygen Atoms of Water" 

Class A B C 

1 0.227 048 409 + 03 0.319 285 464 + 04 0.998 202 369 + 00 
2 0.344 879 279 + 01 0.332 071 268 + 04 0.999 966 806 + 00 
3 0.344 879 279 + 01 0.704 513 690 + 04 0.998 410 933 + 00 
4 0.389 675 373 + 03 0.307 583 102 + 04 0.100 093 916 + 01 
5 0.242 698 627 + 03 0.570 163 312 + 04 0.999 941483 + 00 
6 0.102 073 144 + 02 0.294 559 020 + 06 0.999 955 520 + 00 
7 0.110 689 075 + 03 0.276 483 570 + 06 0.999 073 327 + 00 
8 0.102 073 144 + 02 0.345 947 762 + 06 0.100 345 021+01 
9 0.112 916 672 + 02 0.305 269 293 + 06 0.999 645 844 + 00 

10 0.102 073 144 + 02 0.261569 141+06 0.100 092 629 + 01 
11 0.124 076 189 + 02 0.631822 125 + 06 0.999 096 863 + 00 
12 0.220 215 490 + 02 0.200 655 234 + 06 0.996 603 809 + 00 
13 0.318 320 038 + 03 0.615 968 625 + 06 0.100 005 582 + 01 
14 0.126 181303 + 03 0.130 406 014 + 06 0.101622 795 + 01 
15 0.161787 306 + 04 0.626 337 617 + 06 0.100 060 296 + 01 
16 0.233 495 670 + 03 0.792 550 488 + 04 0.100 239 015 + 01 
17 0.102 073 144 + 02 0.102 467 840 + 06 0.993 570 738 + 00 
18 0.102 073 144 + 02 0.520 450 148 + 06 0.999 982 804 + 00 
19 0.199 325 260 + 03 0.136 718 561+05 0.109 999 999 + 01 
20 0.655 663 666 + 03 0.911956 562 + 06 0.101060 666 + 01 
21 0.229 295 538 + 03 0.155 507 061+05 0.100 122 450 + 01 
22 0.139 064 225 + 02 0.174 304 908 + 07 0.995 094 240 + 00 
23 0.254 667 215 + 03 0.369 866 099 + 05 0.105 506 256 + 01 
24 0.167 215 482 + 04 0.576 040 719 + 06 0.100 573 744 + 01 
25 0.149 723 616 + 02 0.241460 602 + 06 0.999 616 608 + 00 
26 0.229 376 206 + 02 0.211941961+06 0.996 846 467 + 00 
27 0.233 567 953 + 02 0.341006 609 + 06 0.994 164 132 + 00 
28 0.102 073 144 + 02 0.360 925 835 + 05 0.108 784 823 + 01 

"The interaction energy is expressed in kcal/mol; the distances are expressed in angstroms. 

Table VI. Pairwise Interaction Constants for Molecule-Water Complexes: Interaction with Hydrogen Atoms of Water" 

Class A B C 

1 0.207 521847 + 01 0.173 850 511+04 0.100 088 759 + 01 
2 0.824 252 534 + 01 0.145 269 011+04 0.100 000 000 + 01 
3 0.130 720 375 + 01 0.280 374 992 + 03 0.998 704 314 + 00 
4 0.159 769 344 + 01 0.463 124 774 + 04 0.100 093 982 + 01 
5 0.356 004 411+01 0.184 585 125 + 06 0.999 759 927 + 00 
6 0.356 004 411+01 0.389 186 260 + 05 0.100 027 880 + 01 
7 0.190 353 591+02 0.618 960 681+04 0.100 000 000 + 01 
8 0.117 872 994 + 03 0.235 846 649 + 04 0.100 101370 + 01 
9 0.845 311871+02 0.870 600 693 + 03 0.100 005 104 + 01 

10 0.163 284 536 + 03 0.762 464 880 + 04 0.999 389 425 + 00 
11 0.141507 664 + 03 0.277 916 666 + 04 0.100 009 498 + 01 
12 0.491524 463 + 02 0.486 883 081+04 0.998 375 371+00 
13 0.347 660 562 + 01 0.682 350 397 + 04 0.100 299 819 + 01 
14 0.968 582 392 + 01 0.130 161777 + 06 0.100 080 614 + 01 
15 0.441930 092 + 03 0.127 116 438+05 0.100 051089 + 01 
16 0.356 528 398 + 01 0.104 377 336 + 04 0.998 747 133 + 00 
17 0.356 004 411+01 0.121598 151+06 0.992 949 978 + 00 
18 0.356 004 411+01 0.404 495 615+05 0.100 236 642 + 01 
19 0.356 004 411+01 0.157 257 820 + 06 0.874 550 834 + 00 
20 0.385 323 176 + 02 0.177 231436 + 06 0.981899 209 + 00 
21 0.604 173 851+01 0.545 685 400 + 05 0.100 149 776 + 01 
22 0.259 413 876 + 03 0.918 035 120 + 04 0.101107 869 + 01 
23 0.102 959 207 + 03 0.776 556 488 + 04 0.102 515 377 + 01 
24 0.943 062 698 + 03 0.970 811281+06 0.998 235 397 + 00 
25 0.649 988 854 + 01 0.173 948 033 + 06 0.995 092 936 + 00 
26 0.974 940 002 + 01 0.189 976 014 + 06 0.997 791417 + 00 
27 0.207 783 979 + 03 0.296 326 648 + 04 0.100 600 804 + 01 
28 0.649 988 854 + 01 0.649 861 953 + 06 0.856 379 583 + 00 

" The interaction energy is expressed in kcal/mol; the distances are expressed in angstroms. 

i and the atom j , respectively. The indices " a " and "b" con- pers of this series2). The classes are distinguished by a number 
stitute the "classes" within a group of atoms of equal atomic and in Tables V and VI we report the entire set of constants A, 
number Z. B, and C needed to fit the computed interaction energies for 

We have made use of the computed values of NCH and amino acids and bases. The bases studied in this work required 
MOVS to classify the atoms into classes (see the previous pa- an extension of our previous classification2 to five additional 
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Figure 1. Geometry and identification code for the atoms in the bases. Each 
base is described twice, once using the alphanumerical identification code 
reported in Tables I-IV, the second time using the "class" identification 
reported in Tables I-IV. 

classes (classes 24-28). The correspondence between atom and 
class can be obtained from Figure 1, where we give the class 
for each atom and the code name used in Tables I-IV. 

The carbon atom in the aromatic ring, connected to a carbon 
and a nitrogen atom (both in the ring) and to a terminal -NH2 
group, is specified by class 24. A carbon atom in a ring, con­
nected to two nitrogen atoms (in the ring) is specified by class 
25. A carbon atom in a ring, connected to two carbon atoms 
and to a terminal hydrogen, is specified by class 26; if the same 
carbon atom is connected to the terminal group -CH3, then 
the carbon atom is specified by class 28. The oxygen atom 
connected to a ring structure, but not part of it (see, for ex­
ample, thyamine, in Figure 1), is specified by class 27. 

A detailed analysis of the pair potentials presented in this 
paper is given elsewhere." However, we provide in Figures 2 
and 3 the isoenergy contour maps representing the interaction 
of one molecule of water with the four bases. 

For each base we have selected three planes; one is the main 
molecular plane, the others are planes parallel to the first, but 
displaced by 4.0 and 6.0 au. The interval between successive 
contours is 1.0 kcal/mol. The maps are obtained by placing the 
oxygen of a molecule of water at each intersection of a square 
grid (of dimension 60 X 60) placed onto each of the planes. The 
hydrogens are allowed to assume the orientation that corre­
sponds to an energy minimum (a detailed description on the 
construction of these maps is available in the first paper of this 
series). The position of the minima in the planes considered are 
very easy to identify (the outermost contour corresponds to the 
zero energy contour). In the Monte Carlo study the position 
of many molecules of water surrounding each base will provide 

-1IS.-5 ' . - ' 3 . ' 31. ' S. 

adenine 
TVl 5.-'9.' -'2.1 5- ' 1S-' 

guanine 
Figure 2. Interaction energy contour maps for adenine and guanine with 
water (the letters a, b, and c identify the plane of the molecule and planes 
4.0 and 6.0 au above the molecular plane, respectively). 

cytosine thymine 
Figure 3. Interaction energy contour maps for cytosine and thymine with 
water (the letters a, b, and c identify the plane of the molecule and planes 
4.0 and 6.0 au above the molecular plane, respectively). 

a realistic representation of the bases in solution; however, the 
maps of Figures 2 and 3 provide a representation that, even if 
preliminary, we think is useful. As previously noted2 these 
maps provide us with a very clear representation on the 
structure of the DNA's basis as seen by water. We stress that: 
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(i) the structures of the bases as seen by water are quite dif­
ferent from the structures of the base as seen, for example, by 
x rays; and (ii) concept like hydrophobicity (see, for example, 
Figure 3, insert a) can be put on more quantitative grounds 
because of the availability of potentials of the type given in 
Tables V and VI. 
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Abstract: The pair potentials reported in the previous papers of this series have been analyzed using phenylalanine as a test 
case. For this amino acid (the last one of the naturally occurring amino acids to be studied) we have computed (in the SCF-
LCAO-MO approximation) the interaction with a molecule of water placed at 75 different positions (or orientations) relative 
to phenylalanine. The computed interaction energies can be duplicated to a reasonable level of accuracy by making use of the 
previously reported pair potentials (with an error of about 1 kcal/mol); therefore, we conclude that our pair potentials are, to 
some extent, transferable to molecules that are chemically similar to those previously studied. We have discussed problems re­
lated to: (1) more refined selections of the points needed to sample the multi-dimensional interaction energy surface; and (2) 
the need to select a more physical form for the pair potential. 
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